Broadening the GMO risk assessment in the EU for genome editing technologies in agriculture

By Katharina Kawall, Janet Cotter & Christoph Then

Environmental Sciences Europe volume 32, Article number: 106 (2020)



Genome editing techniques, especially the CRISPR/Cas technology, increase the possibilities and the speed of altering genetic material in organisms. So-called genome editing is increasingly being used to achieve agriculturally relevant novel traits and/or genetic combinations in both plants and animals, although predominantly as proof of concept studies, with commercial growing or rearing so far limited to the U.S. and Canada. However, there are numerous reports of unintended effects such as off-target effects, unintended on-target effects and other unintended consequences arising from genome editing, summarised under the term genomic irregularities. Despite this, the searching for genomic irregularities is far from routine in these studies and protocols vary widely, particularly for off-target effects, leading to differences in the efficacy of detection of off-target effects. Here, we describe the range of specific unintended effects associated with genome editing. We examine the considerable possibilities to change the genome of plants and animals with SDN-1 and SDN-2 genome editing (i.e. without the insertion of genes conferring the novel trait) and show that genome editing techniques are able to produce a broad spectrum of novel traits that, thus far, were not possible to be obtained using conventional breeding techniques. We consider that the current EU risk assessment guidance for GMOs requires revision and broadening to capture all potential genomic irregularities arising from genome editing and suggest additional tools to assist the risk assessment of genome-edited plants and animals for the environment and food/animal feed in the EU.


Continue reading