EFSA´s Risk Assessment of Genetically Engineered Plants

Dr. Christoph Then, Testbiotech e.V. München
www.testbiotech.org christoph.then@testbiotech.org
Testbiotech

• promotes independent research
• examines ethical, social and economic issues and risks to health and the environment
• serves as a watchdog
• Initiates public debates
PlantGeneRisk

Database on the authorisation of genetically engineered plants in the European Union

This database gives an overview of the authorisation of genetically engineered plants in the European Union. Special attention is given to the work of the European Food Safety Authority (EFSA). Each plant listed in the database is portrayed in a short summary, followed by a list that gives an overview of some specific known risks. These risks are contrasted with gaps in the EFSA risk assessment. High standards for the protection of consumers and the environment are set by EU regulations 178/2002, 1829/2003 and 2001/18. The purpose of this database is to enforce the implementation of those legal standards in the authorisation process of genetically engineered plants.

Read more | Deutsch

Search

Event name
40-3-2
A5547-127
Bt11

Projekte
EFSA GMO Watch
EFSA Guidance
Synthetische Biologie
EFSA Independence
Research Projects
PlantGeneRisk Database

Infopoint
Reports and Publications
Contact
Legal Notice
What is authorised for EU markets?

46 events authorised for food and feed:

- 26 x maize
- 8 x cotton
- 7 x soy
- 3 x oilseed rape
- 1 x sugar beet
- 1 x potato (industrial usage)
What is authorised for EU markets?

- 8 x insecticidal proteins (maize and cotton)
- 15 x tolerance against herbicides (soybean, oilseed rape, cotton, maize),
- 22 x “stacked events”
- 1 x starch (potato)
- 1 x male sterility (oilseed rape)
Some requirements from EU regulations

>> Regulation 178/2002 “the Food Safety Regulation”:
“Risk assessment shall be based on the available scientific evidence and undertaken in an independent, objective and transparent manner."

>> Regulation 1829/2003, „genetically modified food and feed“:
products derived from genetically engineered plants “should only be authorised for placing on the Community market after a scientific evaluation of the highest possible standard.”

>> Directive 2001/18, „release of genetically engineered organisms“:
requires the examination of the “direct and indirect, the immediate and delayed effects” of the genetically engineered plant “on human health or the environment”, “in accordance with the precautionary principle.”
EU Commission plans a new regulation

How to implement these requirements?

EUROPEAN COMMISSION

Brussels, XXX
SANCO/12462/2011 Rev. 1
(Pool/E1/2011/12462/12462R1-EN.doc)
[...](2012) XXX draft

COMMISSION IMPLEMENTING REGULATION (EU) No .../

of XXX


(Text with EEA relevance)
EFSA’s comparative risk assessment: not meant to be comprehensive.

„The underlying assumption of this comparative approach is that traditionally cultivated crops have a history of safe use for consumers and/or domesticated animals. These traditionally cultivated crops can thus serve as comparators when assessing the safety of GM plants and derived food and feed.“
Comparing apples with pears

Conventional breeding and genetic engineering are fundamentally different from a technological point of view as well as from a biological perspective.
“Nonetheless, the frequency of success of enhancing the transgenic plant is low due to a number of factors including the low predictability of the effects of a specific gene on the plant's growth, development and environmental response, the low frequency of (...) transformation, the lack of highly predictable control of the gene once introduced into the genome, and other undesirable effects of the transformation event and tissue culture process.”

Source: Patent application WO2004053055
“In 2004, the task force’s work culminated in the publication of a report that included a series of recommendations for the nutritional and safety assessments of such foods and feeds. This document has gained global recognition from organizations such as the European Food Safety Agency and has been cited by Japan and Australia in 2005 in their comments to Codex Alimentarius. The \textbf{substantial equivalence paradigm}, called the comparative safety assessment process in the 2004 ILSI publication, is a basic principle in the document.“ (ILSI, 2008)
## ILSI Task Force

### Expert Working Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Munro &amp; Jason Hlywka</td>
<td>Cantox, Inc. / U. of Toronto</td>
</tr>
<tr>
<td>Martina McGloughlin</td>
<td>U. of California, Davis</td>
</tr>
<tr>
<td>Bruce Chassy</td>
<td>U. of Illinois</td>
</tr>
<tr>
<td>Richard Phipps</td>
<td>U. of Reading</td>
</tr>
<tr>
<td>Harry Kuiper &amp; Gijs Kleter</td>
<td>Wageningen University</td>
</tr>
</tbody>
</table>

### ILSI Task Force Members

<table>
<thead>
<tr>
<th>Company</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayer CropScience</td>
<td>Ray Shillito</td>
</tr>
<tr>
<td>Dow AgroSciences</td>
<td>Joseph Dybowski</td>
</tr>
<tr>
<td>DuPont/Pioneer</td>
<td>Matthias Liebergesell</td>
</tr>
<tr>
<td>Monsanto</td>
<td>Kevin Glenn</td>
</tr>
<tr>
<td>Renessen</td>
<td>David Russell</td>
</tr>
<tr>
<td>Syngenta Seed</td>
<td>Catherine Kramer</td>
</tr>
</tbody>
</table>
ILSI
Funded by Coca-Cola, Monsanto, Dow Chemical, Nestle and others

AP-news, 2006: „U.S.-based research foundation is being barred by the World Health Organization from helping set global standards for protecting food and water supplies because of its funding sources.“

• Management Board
• ANS Panel (Food additives and nutrient sources added to food)
• CEF Panel (Food contact materials, enzymes, flavourings and processing aids)
• GMO Panel
• PPR Panel (Pesticides)
Some lessons learnt from tobacco industry ...

- Denial of specific risks
- Influencing scientific standards for risk assessment
- Close collaboration with scientists and international institutions

(Grüning T, Gilmore AB, McKee M: Tobaccoindustry influence on science and scientists in Germany. Am J Public Health 2006; 96: 20–32.)
...for example: Denial of specific risks

“The experiments were no more dangerous than feeding the children a small carrot since the levels of beta-carotene and related compounds in Golden Rice are similar.”

(From the website of the Golden Rice Consortium http://www.goldenrice.org/ )
A “comprehensive safety assessment” is mentioned but never applied by EFSA

„Where no comparator can be identified, a comparative risk assessment cannot be made and a comprehensive safety and nutritional assessment of the GM plant and derived food and feed itself should be carried out.“
Some weaknesses in current RA of EFSA (1): Comparative approach

Comparative risk assessment is the standard procedure. Instead of a comprehensive risk assessment this is only a reduced 'check up' based on a assumption that risks from genetically engineered plants can be regarded as equivalent to those of plants derived from conventional breeding.
Some weaknesses in current RA of EFSA (2): Flawed reference data

The most relevant step in comparative risk assessment (the investigation of substantial equivalence) allows the introduction of flawed 'historical' data. Especially the data base of ILSI is used widely during risk assessment of EFSA.
Example: Flawed historical data as references

Joe Perry, current Chair of EFSA’s GMO Panel:
"(…) at the present time we can't trust the ILSI database. There is not sufficient environmental information from where these trials were done and that's why we insist that the commercial reference variety should be planted simultaneously with the GM and the non-GM. Otherwise I think we are in an unsafe situation and I would worry that the limits would be too wide."

Some weaknesses in current RA of EFSA (3):

No investigations to defined stress conditions

Interactions with the environment (such as climate change or plant pests) that can impact the plants composition are not tested sufficiently. There is no investigation under defined conditions to assess the interaction of the gene construct with the plant’s genome.

There is no request to apply more recent technologies, such as metabolic profiling to study genomic reactions.
Several publications show genetically engineered plants react unexpectedly and unpredictably to environmental impacts. Ongoing climate change shows how important it is to have more data about these issues.
Some weaknesses in current RA of EFSA (4): No coherent testing for health effects

Testing for health risks does not entail mandatory investigations such as in vitro toxicity tests on cell cultures, targeted investigation of specific health risks (such as immune and reproductive toxicity) and mandatory long term and multi generational studies.
### Feeding studies on health effects - not mandatory

<table>
<thead>
<tr>
<th>Company/product</th>
<th>Trait</th>
<th>Duration, species</th>
<th>animal</th>
<th>Issue in investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayer/LLRice62</td>
<td>Rice with herbicide tolerance</td>
<td>42 days, poultry 96 days, pigs</td>
<td></td>
<td>Feed conversion</td>
</tr>
<tr>
<td>Monsanto/MON863</td>
<td>Maize with Bt toxin</td>
<td>90 days, rats</td>
<td></td>
<td>Health risks</td>
</tr>
<tr>
<td>Monsanto/NK603</td>
<td>Maize with herbicide tolerance</td>
<td>90 days, rats</td>
<td></td>
<td>Health risks</td>
</tr>
<tr>
<td>Pioneer/1507</td>
<td>Maize with Bt toxin</td>
<td>90 days, rats</td>
<td></td>
<td>Health risks</td>
</tr>
<tr>
<td>Syngenta/ Bt11</td>
<td>Maize with Bt toxin</td>
<td>14 days, cows 14 days, poultry</td>
<td></td>
<td>Feed conversion</td>
</tr>
</tbody>
</table>
Some weaknesses in current RA of EFSA (5):

Residues from spraying not assessed

The necessary interplay with pesticide regulation is missing.

Residues from spraying with complementary herbicides are not taken into account.
The objective of current EU legislation is to avoid *any* adverse effect on human health from genetically modified plants. Therefore, risk assessment must take the cumulative effect of herbicide residues on genetically modified plants into account.
Some weaknesses in current RA of EFSA (6):

Mode of action of Bt toxins not fully understood

Risk assessment of Bt plants is based on a highly questionable assumption about their mode of action and their selectivity.

Bt toxins in the plants are modified and pre-activated – these toxins were never assessed according to pesticide regulation.
Example MON810, Cry1Ab: not neutral to human cells

Msnage R., Clair E., Gress S., Then C., Székács A., Séralini G.-E., 2012, Cytotoxicity on human cells of Cry1Ab and Cry1Ac Bt insecticidal toxins alone or with a glyphosate-based herbicide, Journal of Applied Toxicology.
Some weaknesses in current RA of EFSA (7): Combinatorial effects neglected

Stacked events are investigated less rigorously than single events.

The requirements for investigation of synergistic, additive and accumulated effects are not sufficiently defined.
Example: SmartStax

- Ten artificial gene constructs, derived from more than seven species (or subspecies or specific strains)
- Six modified bacterial toxins (one of them synthetic)
- Tolerance to two herbicides

...but synergistic effects in the food chain were not investigated.
Some weaknesses in current RA of EFSA (8):
Missing quality standards for data of industry

Quality standards for the investigations of industry are not defined.

Fully evaluated methods to measure the expression of the newly introduced gene constructs is not requested.
3.5 Data Assessment

During the process of data summarization and analysis, experienced scientists familiar with each experimental design and evaluation criteria were involved in all steps. This oversight ensured that the data were consistent with expectations based on experience with the crop. In addition, the overall dataset was evaluated for evidence of biologically relevant changes, and for possible evidence of an unexpected plant response. If cooperating scientists indicated any unexpected observations or issues in the course of the study, they are noted in this report. Data were then submitted to statistical analysis.
Some weaknesses in current RA of EFSA (9):

No cut off criteria for persistent or invasive plants

It is not a requirement for industry to show that they can withdraw their product from the market if needed.
GM crop escapes into the American wild

Transgenic canola found growing freely in North Dakota.

Natasha Gilbert

A genetically modified (GM) crop has been found thriving in the wild for the first time in the United States. Transgenic canola is growing freely in parts of North Dakota, researchers told the Ecological Society of America conference in Pittsburgh, Pennsylvania, today.

The scientists behind the discovery say this highlights a lack of proper monitoring and control of GM crops in the United States. If GM crops with herbicide resistance spread beyond farmland, they could become problematic weeds.

Source: Nature, 2010
Some weaknesses in current risk analysis (10):
Monitoring of health effects not requested

Post-marketing monitoring for identification of potential negative health effects is not requested.
What do we really know about any long-term effects?

“As regards food safety, even if some GM products have been found to be safe and approved on a large scale ... the lack of general surveillance and consequently of any exposure data and assessment means that there is no data whatsoever available on the consumption of these products – who has eaten what and when. ... in the absence of exposure data in respect of chronic conditions that are common, such as allergy and cancer, there simply is no way of ascertaining whether the introduction of GM products has had any other effect on human health.”

Source: EU Commission, 2005
Monsanto’s fact sheet on stacked soy “Intacta” (MON87701 x MON89788), to be grown in Brasil:

“EFSA finalized the risk assessment and adopted its Scientific Opinion (...) concluding that 'the soybean MON 87701 x MON 89788 is as safe as its comparator with respect to potential effects on human and animal health or the environment in the context of its intended uses'.”

See complaint against 'stacked soy' Intacta, www.testbiotech.de/node/691
Some recommendations

- Drop the concept of comparative risk assessment; do not presume safety, equivalence, similarity or familiarity; use comparison as a tool and not as a concept;
- Always apply a comprehensive risk assessment;
- Establish clear cut off criteria for rejection of applications;
- Promote independent risk research;
- Set higher standards for independency of authorities.