A future task in good hands

GMO Risk Assessment - EU experiences and recent developments

Beatrix Tappeser Head, Biosafety Division, BfN, Germany ENSSER - EEA Symposium on Science & Society 'Integrity of Science under Attack, Kopenhagen, March 15-16, 2010

The German Federal Agency for Nature Conservation (BfN)

Central scientific authority of the German federal government for national and international nature conservation and landscape management.

Regulatory tasks

- Evaluation and performance of environmental risk assessment
- Evaluation and development of monitoring plans
- Evaluation of monitoring data

one of the Competent authorities (CAs) under the German Genetic Engineering Act concerned with the regulation of genetically modified organisms on national and EU level – lead authority Federal Office for consumer protection an food safety

The German Federal Agency for Nature Conservation (BfN)

GMO-related scientific and collaborative tasks:

Advancement of scientific tools for the environmental risk assessment

Development of scientific concepts and advancement of methods for the monitoring of GMOs

Deliver scientific expertise and advise to the Ministry and the Federal States

Cooperation with national and international research institutions

Topics of this presentation

- Cultivation in Europe applications and pipeline
- The current practice of environmental risk assessment
- Two current examples MON 89034 x 88017 and MON 87460
- The LLP project
- Conclusions

Planned Maize Cultivation in Europe

Maize events applied for cultivation in Europe

Monsanto	YieldGard	MON810	Insect resistance	
		(corn b	orer, lepidopterans)	
Monsanto	Roundup	NK603	Herbicide tolerance	
	Ready		(to glyphosate)	
Stack		NK603xMON810		
Stack		NK 603xMON 89034	4	
Monsanto	YieldGard VT	MON88017 *	Insect resistance	
			(to coleopterans)	
Stack		MON88017xMON 89034		
Dow AgroSciences	Herculex I	1507	Insect resistance	
Pioneer Hi-Bred,			(to lepidopterans)	
Dow AgroSciences	Herculex	RW 59122	Insect resistence	
Pioneer Hi-Bred			(to coleopterans)	
Stack		59122x1507		
Stack		59177x1507xNK603	3	
Syngenta	Agrisure GT	GA21	Herbicide tolerance	
			(to glyphosate)	
Bayer CropScience		T25	Herbicide tolerance	
Stein & Rodriguez-Cerezo	o, JRC, 2009		(to glufosinate)	

GM maize pipeline

Maize events authorised in at least one country but not yet commercialised in Europe

Monsanto	YieldGard VT PI	RO MON89034 '	Insect resistance (to lepidopterans)
Monsanto	High lysine	LY038 *	Crop composition (high lysine content)
Syngenta	n/a	3272 *	Crop composition (amylase content)
Syngenta	Agrisure	MIR604 *	Insect resistance (to coleopterans)
Stein & Rodriguez-Cerezo	JRC 2009		

GM maize pipeline

GM maize in the advanced F	R&D pipeline
----------------------------	--------------

worldwid	e		
Monsanto	n/a	MON87754	Crop composition
		,	
Pioneer Hi-Bred 2010	AcreMax 1	n/a	(to coleopterans)
Monsanto and BASF 2012	n/a	MON87460	Abiotic stress tolerance (to drought)
Dow AgroSciences 2012	DHT	n/a	Herbicide tolerance
n/a (India) 2014	n/a	cry1Ac + cp4epsp4	Insect resistance herbicide tolerance
Syngenta 2015	n/a	n/a	Abiotic stress tolerance (to drought)
BASF Plant Science 2015	NutriDense	n/a	Crop composition (protein, amino acid and
Stein & Rodriguez-Cerezo	o, JRC, 2009		phytase content)

Soybean commercialisation

country			
Monsanto	RoundupReady	MON 40-3-2	Herbicide tolerance (to glyphosate)
Monsanto	RoundupReady 2	MON89788	Herbicide tolerance (to glyphosate)
Bayer CropScience	LibertyLink	A2704-12	Herbicide tolerance (to glufosinate)
Bayer CropScience	LibertyLink	A5547-127 *	Herbicide tolerance (to glufosinate)
Pioneer Hi-Bred (Optimum GAT	356043 * (to ALS inhibi	Herbicide tolerance tors and glyphosate)

Stein & Rodriguez-Cerezo, JRC, 2009

Soybean pipeline

GM soybeans in the	e advanced R&D pipeline
worldwide	

WOIIGWI	ue		
Syngenta	n/a	n/a	Nematode resistance
2011			
Monsanto	Omega-3	MON87769	Crop composition
2012			(stearidonic acid content)
Monsanto	n/a	n/a	Herbicide tolerance
2012			(to dicamba)
Monsanto	n/a	n/a	Insect resistance and
2013		herbicic	le tolerance (to glyphosate)
Dow AgroScien	ces DHT	n/a	Herbicide tolerance
2013			
Monsanto	Vistive III	MON87754	Crop composition
2014			(high oleic content)
Syngenta	n/a	n/a	Herbicide tolerance
2014			(to HPPD inhibitors)
Bayer CropScie	ence n/a	n/a	Herbicide tolerance
2015			(to HPPD and glyphosate)
Bayer CropScie	ence n/a	n/a	Herbicide tolerance
2015			(to HPPD and glufosinate)

Stein & Rodriguez-Cerezo, JRC, 2009

Pipeline characteristics

New herbicide resistence, further stacking, some crop composition traits

New Herbicide Traits:

Dicamba – mimics naturally occuring plant hormones (auxins), destroys tissue through uncontrolled cell division and growth

DHT – Dow AgroSciences Herbicide Traits, confer resistence to 2,4 D and "fop"herbicides

fop herbicides are aryloxyphenoxypropionate 'fop' grass herbicides

HPPD inhibitors – Hydroxyphenylpyruvate deoxygenase inhibitor, HPPD is important for tyrosine catabolism, tyrosine is important for protein building and plays an important role in photosynthesis

ALS inhibitors – Acetolactate synthase inhibitors

Current Practice of Environmental Risk Assessment http://www.bfn.de/0502_gentechnik.html?&no_cache=1

STANDARDISING THE ENVIRONMENTAL RISK ASSESSMENT

Marion Dolezel Marianne Miklau Michael Eckerstorfer Angelika Hilbeck Andreas Heissenberger Helmut Gaugitsch

BfN - Skripten 259

2009

The Current Practice of Environmental Risk Assessment

Main Shortcomings

•Focusing on the transgene and not on the GMO as a whole

•Transgene product testing mainly when pesticidal properties – derived from a bacterial production source

•No tests on equivalence for the bacterial derived product and the GMO produced transgene product

•No description and integration of relevant aspects of representative receiving environments

- No adequate exposure analysis
- No or unsufficient integration of NTOs from

The Current Practice of Environmental Risk Assessment

Main Shortcomings

- •Pooling of data from field trials over several locations
- Data from one or maximal 2 vegetation periods only
- Plot size often not adequate
- No meaningful statistical evaluation
- •No integration of species of conservation concern
- Toxicological assessment unsufficient

A current example MON 89034 x MON 88017

Traits and Scope of the Application

Traits:

Cry 1A.105 + Cry 2Ab2 = 89034

Cry 3Bb1 + epsps (glyphosate-resistence) = 88017

Scope

Cultivation of MON 89034 x MON 88017 Seed production of MON 89034

A current example MON 87460

Drought tolerance

Expresses prokaryotic CspB - cold shock protein Contains npt II

Action very unspecific – mode of action how drought tolerance is achieved not understood

Binds to single stranded RNA – influences expression of proteins by stabilizing the mRNA for translation

several provided studies used test, control or reference material contaminated with MON 87460 or maize NK 603

Low Level Presence – the Dimension

"But as soon as a GMO is cultivated in a country that is exporting to the EU, even on a small scale, the repercussions can be big: for instance in the case of Herculex, the corresponding GM maize was grown on only one percent of the total maize acreage in the USA, but in approximately two thirds of all samples tested subsequently,traces of Herculex maize were found (Toepfer 2008)."

Stein & Rodriguez-Cerezo, JRC, 2009

Conclusions

A future task in good hands

Thank you very much for your kind attention!

Dr. Beatrix Tappeser Federal Agency for Nature Conservation, Germany

> Division II 3.3 GMO-Regulation, Biosafety

http://www.bfn.de/0301_gentechnik.html